| || APACHE .
PORTALS

Struts Bridge v.1.0.4

Project Documentation

Apache Software Foundation 21 December 2007

TABLE OF CONTENTS i

Table of Contents

Struts Bridge
SUMMAAIY . . o e e e e e e e e e e e 1

FatUIES 2

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2005 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

11

1.1 SUMMARY 1

Summary

Summary
The Struts Bridge allows Struts and Struts Tiles applications to be run as JSR-168 compliant Portlets.

Existing or new Struts Applications can be transparently deployed as Portlet Application or Web
Application.

The Bridge wraps and enhances the native Struts Framework to overcome its limitations and
incompatibilities with the Java Portlet Standard requirements.

An existing Struts Application can be used as a Portlet without changes to the code or JSP files if:

* afew common sense rules, based on a proper MVC architecture, are followed for the Struts Action
configurations

* Struts Tags are used for rendering all resource paths (like images) and action links

If a Struts Portlet doesn't use Portlet specific featutes, it can also be accessed and used as Web
Application at the same time. Even testing the Struts Application can then be done completely
independent of a Portal.

The Struts Bridge 1s developed to be independent from specific Portals and uses only a very small
interface to the Portal to be able to get access to the Servlet environment at runtime. As all JSR-168
Portlet Containers are required to build upon the Servlet specification, providing this interface for a
specific Portal is usually very easy to do, if not done already.

The Apache Portals Jetspeed-2 Portal provides this interface natively, as well as example Struts Portlet
Applications using the Struts Bridge like a JPetstore Portlet.

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://struts.apache.org
http://www.jcp.org/en/jsr/detail?id=168
http://portals.apache.org/jetspeed-2

1.2

1.2 FEATURES 2

Features

Features

The Struts Bridge provides the following features for developing and running Struts Applications as
Portlets:

* Provides a "virtual" page context and a "normal" page utl to the Struts Application
* Allows Servlet invocation from an ActionRequest using an separate lightweight interface to the Portal
* Provides extension points if a more complex interface to the Portal is required

* Automatically separates Struts Action Processing and View Rendering when accessed from an
ActionRequest

* Transparent communication of request attributes between ActionRequest and RenderRequests
* Transparent translation of "normal" Web application resoutrce and action link utls to valid Portlet utls

* Tiles support and automatic configuration of the correct (Portlet)RequestProcessor (enhanced for
1.0.1)

* Deploy and run Struts Applications as Portlet and as Web Application at the same time
* 1.0.1: Multiple StrutsPortlet instances with the StrutsServlet session isolated to PORTLET_SCOPE

* Supports Struts release 1.2.7

Struts Page URL

Struts determines the Actions to perform on the request url. A Portlet on the other hand doesn't have or
receive an url, only request parameters.

To be able to use Struts within a Portlet, a current Page context is maintained by the Struts Bridge which
is used to provide Struts with a "virtual" request context just as if it were accessed from a Web
Application.

The Struts Page URL is maintained as a Portlet Render Par anet er and included in all Portlet URLs
generated for the Portlet. When the St rut sPort | et receives a request it uses the Struts Page URL to
create a new Ht t pSer vl et Request with a redefined request url before invoking the Struts

Portl et Servl et (extending the Struts Act i onSer vl et).

None of the Action Mappings for an existing Struts Application have to be changed (in this respect at
least) to allow it to run in a Portlet context.

The ServletContextProvider interface

Processing Act i onRequest and Render Request events from a Servlet application is a problem with
the current Portlet Specification. Although Servlets (and JSPs) can be invoked from a Portlet, the Portlet

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2 FEATURES 3

Specification only supports this from the Render Request .

As request parameters are only available during the Act i onRequest , not being able to use a Struts for
processing these is a serious limitation. Together with no clear inter-portlet application communication
support, this is probably one of the biggest omissions from the Portlet Specification.

But, because the Portlet Specification is build upon the Servlet Specification (2.3), the Portlet Container
implementation (ike Pluto) and/or the Portal itself, usually has direct access to, and also uses the
Ser vl et Cont ext , even during the Act i onRequest event.

It is therefore usually quite easy to provide access to the Ser vl et Cont ext , although it will require
some knowledge of the Portal and/or the Portlet Container implementation.

The Struts Bridge uses the Ser vl et Cont ext Pr ovi der interface from the portals-bridges-common
library to get access to the required Ser vl et Cont ext .

To be able to use the Struts Bridge, a St r ut sPor t | et must therefore be provided with a concrete
implementation of the Ser vl et Cont ext Pr ovi der interface (through its initialization parameters).
This implementation class can be supplied together with the Portlet or be provided natively by the Portal
as the Jetspeed-2 Portal does.

Portals requiring a more complex interface

Although the Ser vl et Cont ext Pr ovi der interface has been defined to be easily implemented for a
specific Portal, it might not be generic enough for all.

To suppott those kind of Portals, the St r ut sPort | et doesn't uses the interface directly, but only
through protected methods of its own which can be extended if needed.

Handling ActionRequests

During an Act i onRequest a Portlet (or invoked Servlet) is not allowed to write content to the
response. This is only allowed during the Render Request event but then a Portlet doesn't have access
anymore to the (input) request parameters which makes the RenderRequest generally useless (and bad
practice anyway) for (Struts) Action processing.

Struts on the other hand only knows one request event and is largely build upon server-side forwarding to
a JSP (or other View rendering technology) after an Action has been processed.

The Struts Bridge solves this problem by allowing Struts Action processing to occur during the
ActionRequest. But, as soon as Struts forwards (or includes) to another handler (JSP, Velocity script, or
even another Action: ActionChaining) it will intercept and freeze the processing,

The Struts Bridge will then save the current processing context (like the path to include or forward to) in
a separate object: the St r ut sRender Cont ext , and end the ActionRequest.

Once the RenderRequest is invoked, the Struts Bridge will use the St r ut sRender Cont ext to restore
the state Struts (and/or an included or forwarded JSP) will expect and continues the processing where it
left off.

Also saved in the StrutsRenderContext are the current Act i onFor m(if it isn't already session bounded),
the Act i onMessages and/or Acti onError s (if not already session bounded which is possible since

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/pluto
http://portals.apache.org/jetspeed-2

1.2 FEATURES 4

Struts 1.2.1).
Important: the StrutsRenderContext is restored only once!

The Portlet Specification expects Portlets to use a true MVC architecture: changing the state of a Portlet
is expected to be done during ActionRequest only. The RenderRequest, which may occur many times, is
expected to only render the current state of the Portlet.

For a proper usage of the Struts Bridge and to conform to the Portlet Specification requirements, the
Struts application too really should be configured to use separate Action processing and View rendering
Actions.

The dependency on the StrutsRenderContext restoring the state during the (next) RenderRequest should
be limited to one situation only: input error processing.

When Struts encounters input validation errors, it forwards (back) to the page specified as input for the
Action. The Struts Bridge handles this situation likewise. When it detects ActionErrors are defined after
the ActionRequest event, it will reset the Struts Page URL to the one from which the ActionRequest was
initiated so subsequent (multiple) RenderRequest events will always render that original page.

Note: this will only result the same behavior as when the Struts Application is accessed as Web
Application if the Action Mapping input attribute indeed points to the originating input page, which
normally will be the case. The Struts Bridge will not (re)set the Struts Page URL to the Action imput attribute valne
(Struts itself will forward to that url) but to the page from which the ActionRequest was initiated!

As said, for a proper usage of the Struts Bridge the Struts application should be configured to use
separate Action processing and View processing Actions. The Struts Bridge intercepts the first include or
forward initiated from a Struts Action during the ActionRequest. During only the first following
RenderRequest it will invoke Struts with #he same Struts Page URL as for the ActionRequest but intercept
before the actual execution of the mapped Action and then include (never forward) the intercepted target
url of the ActionRequest (normally a JSP).

A propetly MVC configured Struts application though can (and should) make use of a (client-side)
redirect after the Action processing Action by using an ActionForward with redirect="true". The
behavior of such a Struts Application then truly complies to the requirements for a Portlet. In fact, the
reference implementation of the Portlet Specification, Pluto , actually sends a redirect to the client
(browser) after an ActionRequest.

The Struts Bridge supports this behavior as it will intercept a client-side redirect during an ActionRequest
by changing the Portlet Page URL to be used by subsequent RenderRequests to the targeted redirect utl.

A Struts Application not complying to the above "rules" might not behave as expected in a Portlet
context:

without this configuration a second RenderRequest event will not get the previously saved
StrutsRenderContext restored and the invoked Struts Action will be executed again (this time without any
parameters).

Migrating an existing Struts Application to a Struts Portlet with doesn't comply to these "rules" might

seem problematic without major changes to the code, but it doesn't have to be.

RenderContextAttributes to the rescue

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/pluto

1.2 FEATURES 5

Although a StrutsRenderContext can only be used once to communicate request parameters from the
ActionRequest to the next RenderRequest (stored in the ActionForm), the Struts Bridge provides
another, completely transparent, solution which can be used without any required changes to the Struts
Application.

The Struts Bridge can be configured, using a simple xml definition, to always save specific named request
attributes during an ActionRequest and restore these only during the next RenderRequest or optionally
every RenderRequest until the next ActionRequest or a RenderRequest for a different Struts Page URL is
invoked.

The request attribute values will be saved in the web session which requires them to implement the
Seri ali zabl e interface.

An example struts-portlet-config.xml (the name of this file is configurable) definition might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi g>
<r ender - cont ext >
<attribute name="errors"/>
<attribute nanme="nessage" keep="true"/>
<attribute prefix="com foo.bar" keep="true"/>
</ render - cont ext >
</ confi g>

(This (adapted) example is taken from the [Petstore Portlet example provided with the Jetspeed-2 Portal.)

With the above example configuration, all request attributes named errors and message are saved after the
ActionRequest. The errors object is restored only once, the message object will be restored until the next
ActionRequest or when the Struts Page URL is changed.

Furthermore, every request attribute which name start with com.foo.bar is also saved after the
ActionRequest. With the "prefix" attribute type definition, a whole range of attributes can be configured
at once.

Using the RenderContextAttributes configuration, a Struts Action can still forward (without redirecting)
to a JSP in a Portlet while passing its required data through the request attributes. Request scoped
ActionForms can also safely be used for this as the Struts Bridge will automatically remove them from
the session again when they go out of scopel!

—n

Using the "single use only" configuration (meaning: without the keep="true" attribute) allows one to pass
on rather large objects to the RenderRequest because, even if they are stored in the Session, this will only
be for a very short period (milliseconds). Of course, with a subsequent RenderRequest these objects
won't be available anymore and the specific View Renderer must be able to handle that situation propetly.
Error objects or error messages (other than ActionMessages and ActionErrors which are already

automatically saved in the StrutsRenderContext) are also reasonable candidates to use like this.

Rendering valid Portlet urls with the Struts JSP Tags
Another problem with using Struts for Portlet Development is rendering valid urls.

There are actually two different type of problems: utls for resources likes images, Javascript or CSS

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2

1.2 FEATURES 6

stylesheets which needs to be loaded by the client (browser), and utls for interacting with the Portlet
itself.

The problem with resource urls is that the content of a Portlet is only included by the Portal, together
with possible content of other Portlets shown on the same page. Although the Portlet runs within its own
context (the same as the web application it is based on), the client (browser) sees only the context of the
Portal page it is currently pointed at.

A Portlet therefore cannot make use of relative src locations for a resource url while this is perfectly valid
(and usually preferred) in a Web Application. For a client to be able to retrieve a resource, its utl really
must include the full context path of the Web Application.

For interacting with the Portlet special PortletURLs must be used which can only be generated using the
Portlet API or through the Portlet JSP Tags. The Struts JSP Tags only generate utls valid for a Web
Application and also doesn't provide some kind of URLProvider interface like JSE.

Furthermore there are two different PortletURL types: ActionURLs and RenderURLs. It is very
important to generate the correct type of url for a certain interaction. Forms must *always* use a POST
to an ActionURL, but for generated links it will have to be determined which type of utl actually is
needed.

To solve these problems, the Struts Bridge provides enhanced versions of the Struts HTML JSP Tags
(including EL variants), which take the Portlet environment into account. Furthermore, using a separate
clement in the struts-portlet-config.xml definition, specific url paths can be configured to be of a certain
type (Resource, ActionURL, RenderURL) only.

For the enhanced Struts HTML JSP Tags (html:form, html:link, html:rewrite, html:image and html:img),
four different TLDs are provided: an EL and non-EL variant, and for both a full replacement of the
Struts supplied struts-html.tld as well as a separate struts-portlet.tld containing only the enhanced Tags
definitions.

The full replacement TLDs makes it very easy for migrating a Struts Application to a Portlet context:
simply map the new TLD in web.xml or redefine the taglib uri in the JSP using:

<U@taglib
uri="http://portal s. apache. org/ bridges/struts/tags-portlet-htm" prefix="htm" %

or

<%@taglib
uri="http://portal s. apache. org/ bridges/struts/tags-portlet-htm-el” prefix="htm-el"
%

(INote: the Struts Bridge library contains all the TLDs so you don't need to add them yourself somewhere under
WEB-INF/.)

For the enhanced html:link and html:rewrite Tags, three additional boolean attributes are defined:
actionURL, renderURL and resourceURL. Using these attributes one can specify which type of url must
be generated (only value "true" is supported).

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2 FEATURES 7

If none of these attributes is specified (with value "true") these Tags will by default generate a
RenderURL.

But, the default can be changed (only between renderURL and actionURL) using a
struts-portlet-config.xml definition. Furthermore, for specific url path (prefixes) you can specify which
type of url must be generated (but with one of the three additional boolean utl type attributes this can
always be overriden).

An example struts-portlet-config.xml with portlet utl type definitions might look like:

<?xm version="1.0" encodi ng="UTF-8"?>
<confi g>
<r ender - cont ext >
<attribute name="errors"/>
<attribute name="nessage" keep="true"/>
</ render - cont ext >
<portlet-url-type>
<action path="/shop/add"/>
<action path="/shop/sw tch"/>
<action pat h="/shop/renove"/>
<action path="/shop/signoff"/>
<action path="/shop/vi enCat egory"/ >
<action path="/shop/viewtent/>
<action pat h="/shop/vi ewProduct"/>
<action path="/shop/viewCart"/>
<action path="/shop/ newOrder"/>
<render pat h="/shop/ newOr der Forni'/ >
<action path="/shop/listOders"/>
<resour ce path="/imges/"/>
</portlet-url-type>
</ confi g>

(This is the full configuration used for the [Petstore Portlet example provided with the Jetspeed-2 Portal.)

In the above example the portlet-utl-type element contains three different sub elements: action, render
and resource. Their path attribute specifies the prefix to which specific utls are matched. This matching
will be done using best match. Internally, the paths will be ordered on longest definition first.

Not shown in the above example is the optional default="render" | "action" attribute for the
portlet-url-type element. With it, the default type of portlet-url can be changed from "render" to "action'

as is used in the Struts Mailreader Demo Portlet (also provided by the Jetspeed-2 Portal):

H|H

1

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi g>

<portlet-url-type default="action"/>
</ config>

This feature is especially useful for Struts Applications who were configured using an earlier version of
the Struts Bridge (0.1) which used an ActionURL as default, like the above Struts Mailreader Demo
Portlet.

The enhanced html:img and html:image Tags, as well as the html:link and html:rewrite Tags, can be used
to generate resource utls using relative (not prefixed with a '/") stc references. The Tags will then

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2
http://portals.apache.org/jetspeed-2

1.2 FEATURES 8

automatically determine the correct url to generate using the current Struts Page URL as defined for this
RenderRequest.

This allows one to replace hard coded resource utls like

with

<htm :image src="../imges/struts-bridge.gif"/>

A simple change with no technical impact, but it will allow the same JSP to be used for both a Web
Application and a Portlet. The JPetstore Portlet example as provided by Jetspeed-2 makes full use of this
feature.

PortletRequestProcessor and PortletTilesRequestProcessor

The Struts Bridge requires a different RequestProcessor to be used for the Struts Application: a
Port | et Request Processor . If a Struts config doesn't define one, or defines one which isn't based
on the PortletRequestProcessor, it will be replaced automatically by the Struts Bridge.

The Struts Bridge also supports Tiles to be used with the Port | et Ti | esRequest Processor . If the
TilesPlugin is defined (as required to be able to use Tiles in Struts) it will be recognized by the Struts
Bridge and then the PortletTilesRequestProcessor will be used instead (if not configured already).

Tiles can be used without problem within a Portlet context, even for Action Mapping or ActionForward
paths, although the same considerations and restrictions must be taken into account as described above.

1.0.1: For proper handling of the Tiles Context, with version 1.0 the Tiles
ComponentConstants. COMPONENT_CONTEXT had to be set as RenderContextAttribute like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<config>
<r ender - cont ext >
<attribute name="org. apache.struts.taglib.tiles.ConpContext"/>
</render - cont ext >
</ config>
With the 1.0.1 release, this isn't necessary anymore as the Struts Bridge will register this special attribute
itself automatically if it hasn't been defined in the struts-portlet-config.xml already.

Running your application as Portlet and Web Application at the same time

Although the Struts Bridge is created to allow Struts Applications to run in a Portlet context, it also
allows the same application to be run in a Servlet context too.

If the Struts Bridge PortletServlet (which extends ActionServlet) detects it is not accessed from a Portlet

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2

1.2 FEATURES 9

context is simply delegates back to the underlying Struts Framework.

Provided the Struts Application doesn't use any Portlet specific features and the Action Mapping
configuration is also (still) valid for a Web Application, the same application war can be deployed as Web
application and as Portlet Application. When deployed in a Portal, the application can even be accessed
as Portlet or as Web Application at the same time!

The JPetstore Portlet example provided by Jetspeed-2 is one example of such a "dual" mode Struts
Application.

Another benefit of such a "dual" mode Struts Application is that it can be tested as Web Application
which zs somewhat easier than testing it as a Portlet.

1.0.1: Multiple StrutsPortlet instances PORTLET_SCOPE isolated StrutsServlet sessions

The Struts framework itself, as well as many Struts applications make have use of the (Servlet) Session for
storing user state. When you want to use multiple StrutsPortlets from the same web application this can
cause conflicts and session state corruption. With Struts Bridge release 1.0.1, this now has been solved by
(optionally, and not by default) isolating the Session scope seen by the StrutsServlet to
PortletSession.PORTLET SCOPE.

If the optional StrutsPortlet init parameter Port | et ScopeSt r ut sSessi on is set to true, the Session
object provided to the StrutsServlet will be a Proxy for the PortletSession and will provide only access to
the PortletSession. PORTLET_SCOPE attributes.

One caveat though: If you also need to use direct Servlet access to the Struts application (meaning: the
browser is invoking the Servlet directly, not through the Portlet), this Servlet won't "see" the previously
APPLICATION_SCOPE Session attributes anymore.

This can be an issue for features like binary file (pdf) rendering through a servlet which needs to use the
Session to access its data. To solve this, the utility PortletWindowU'tils class can be used which provides
methods to access a specific Portlet instance its PORTLET_SCOPE session attributes based on its
PortletWindowld.

That PortletWindowld (which a Portlet can retrieve itself using the PortletWindowUtils) needs to be
passed on to the Servlet first (for example as query-string parameter on a link send to the browser) for it
to be able to make use of it.

©2005 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2

